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a b s t r a c t

Molecular dynamics of a polycrystalline sample of (CH3NH3)5Bi2Br11 (MAPBB) is studied on the basis of
the proton T1 (55.2 MHz) relaxation time and the proton second moment of NMR line. The T1 (55.2 MHz)
was measured for temperatures from 20 K to 330 K, while the second moment M2 for those from 40 K to
330 K. The proton spin pairs of the methyl and ammonium groups perform a complex stochastic motion
being a resultant of four components characterised by the correlation times sT

3, sH
3 , s2, and siso, referring to

the tunnelling and over the barrier jumps in a triple potential, jumps between two equilibrium sites and
isotropic rotation. The theoretical expressions for the spectral densities in the cases of the complex
motion considered were derived. For sH

3 , s2, and siso the Arrhenius temperature dependence was assumed,
while for sT

3 – the Schrödinger one. The correlation times sH
3 for CH3 and NH3 groups differ, which indi-

cates the uncorrelated motion of these groups. The stochastic tunnelling jumps are not present above the
temperature Ttun at which the thermal energy is higher than the activation energy of jumps over the bar-
rier attributed to the hindered rotation of the CH3 and NH3 groups. The Ttun temperature is 54.6 K for NH3

group and 46.5 K for CH3 group in MAPBB crystal. The tunnelling jumps of the methyl and ammonium
protons are responsible for the flattening of T1 temperature dependence at low temperatures. The isotro-
pic tumbling is detectable only from the M2 temperature dependence. The isotropic tumbling reduces the
second moment to 4 G2 which is the value of the intermolecular part of the second moment. The motion
characterised by the correlation time s2 is well detectable from both T1 and M2 temperature dependences.
This motion causes the appearance of T1 minimum at 130 K and reduction of the second moment to the
7.7 G2 value. The small tunnelling splitting xT of the same value for the methyl and ammonium groups
was estimated as 226 MHz from the Haupt equation or 80 MHz from the corrected by us Haupt equation.
These frequencies correspond to 0.93 leV and 0.34 leV tunnel splitting energy.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Molecular-ionic halogenoantimonates(III) and halogenobis-
muthates(III) of the general formula RaMbX3b+a (where M = Sb, Bi
and X = Cl, Br, I), containing organic cations in the crystal structure,
have evoked much interest as they exhibit ferroelectric, ferroelas-
tic and nonlinear optical properties [1–3]. Numerous structural
studies have shown that these derivatives are characterised by a
rich diversity of anionic structures. The type of anionic form in
these complexes is clearly connected with the size and symmetry
of the organic counter ions and their ability to form N–H� � �X
hydrogen bonds [4–6]. It is interesting that the appearance of fer-
roelectricity in the RaMbX3b+a family of crystals is limited mainly to
M2X3�

9 or M2X5�
11 anionic stoichiometry. For the compounds charac-
ll rights reserved.
terised by the chemical composition R3M2X9, the polar properties
were found in complexes where R stands for small alkylammoni-
um cations like [CH3NHþ3 ] [7], [ðCH3Þ2NHþ2 ] [8] or [(CH3)3NH+] [9].
The compounds of the composition R5M2X11 are rather rare. So
far, only several examples of compounds crystallising with this
chemical composition, containing methylammonium [10], pyridi-
nium [11] and imidazolium [12] cations in the crystal structure
have been found. All known R5M2X11 complexes exhibit ferroelec-
tric properties. The paraelectric–ferroelectric phase transitions
found in the R5M2X11 and R3M2X9 subgroups were classified as of
‘‘order–disorder’’ type. The origin of the ferroelectricity was found
to be related to the dynamics of dipolar organic cations [1,13].

(CH3NH3)5Bi2Br11 (MAPBB) appeared to be the first example of
crystals having isolated (Bi2Br11)�5 units in the crystal lattice
[14]. It is built up of five types of methylammonium cations
(MA) and isolated (Bi2Br11)�5 anions. MAPBB is found to undergo
a ferroelectric phase transition of the mmmFmm2 type (from Pcab
to Pca21 space group at 311.5 K). Dielectric dispersion [15] and
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Raman scattering [16] studies have indicated the – order–disorder’’
mechanism of the phase transformation. The lowest temperature
phase 4 transition is manifested by a nonlinear increase in sponta-
neous polarisation and dielectric anomaly in the vicinity of 77 K
[17]. The molecular mechanism of the phase transition is based
mainly on the single-crystal X-ray diffraction studies. In high tem-
perature paraelectric phases (I) two of the five MA cations are or-
dered while the other three are disordered. The observed
disorder consists of two equilibrium positions for each site be-
tween which the cations can jump. Through the phase transition
at 311.5 K one MA cation becomes ordered, whereas the remaining
two are still disordered over the ferroelectric phase (II). These two
cations are believed to contribute to the phase transition mecha-
nism (II ? III) at about 77 K. Detailed mechanism of the transition
from phase II to III is still unclear and the symmetry (space group)
of the lowest temperature phase (III) is still unknown.

The methylammonium salts have been extensively investigated
in connection with the appearance of various phase transitions
including ferroelectric ones. The (CH3NH3)+-cations below room
temperature are believed to perform rotations around the C–N
axes. Two kinds of such reorientations are considered to be possi-
ble. The first one is the correlated reorientation of the CH3 and NH3

groups in the cation i.e. all cations are equivalent and rotate as a
whole around the C–N axes. Another kind of motion is the uncor-
related reorientation of the CH3 and NH3 groups. The information
on this problem has been reported in papers based upon NMR
relaxation and neutron quasielastic scattering methods [18–25].
The problem of the correlated/uncorrelated hindered rotations of
CH3 and NH3 will be considered in our paper. The MA cation
dynamics in ferroelectric phase of MAPBB has not been analysed
by other methods yet.

The purpose of this work was to obtain comprehensive informa-
tion about the methyl ammonium cations dynamics of MAPBB in a
wide temperature regime, from measurements of the temperature
dependence of the proton relaxation time T1 (55.2 MHz) and the
second moment of NMR line. The T1 time was measured from
20 K to 330 K, while the second moment M2 from 40 K to 330 K.
The theoretical expressions for the spectral densities for the com-
plex motion presented are derived. The tunnelling effects are
analysed.

The vibrational levels of CH3 and NH3 groups are split with
ET = �hxT tunnel splitting energy. This tunnel splitting frequency
xT imposes the spin splitting xi in the magnetic field. The values
of xT can be estimated from the Haupt equation [26] or from the
corrected Haupt equation proposed by us.

The complex motion of MAPBB protons from the melting point
to the liquid nitrogen temperature (77 K) has been studied by pro-
ton spin–lattice relaxation times T1 (90 MHz) [27]. The high tem-
perature shallow minimum was visible in the T1 (90 MHz)
temperature dependence. The authors of Ref. [27] interpreted this
minimum assuming the Dunn and McDowell theory [28] as due to
C03 reorientation of the whole cation about the C03 axis making an
angle of 13� with the C3 axis of NH3 and CH3 groups. This motion
can be compared with the motion above the liquid nitrogen tem-
perature detected also by us. The motion identified separately by
the T1q (B1 = 10.7 Gs) method [27] as the 180� flip motion of the
methylammonium cation can be compared with the motion iden-
tified by us on the basis of second moment reduction, at highest
temperatures. Also previous T1 (90 MHz) results helped us recog-
nise the tunnel splitting frequency in the MAPBB.
2. Experimental

The crystals of pentakis(methylammonium) undecabromodibi-
smuthate [CH3NH3]5 [Bi2Br11] (MAPBB) were obtained by the
method described in Ref. [29]. The material was powdered and
sealed in glass ampoules. 1H NMR spin–lattice relaxation time
(T1) measurements were carried out as a function of temperature
at 55.2 MHz, using Bruker SXP 4/100 pulsed spectrometer. Inver-
sion recovery pulse sequence was used for the measurement of
T1. The temperature of the sample was varied from 293 to 20 K
with the help of a continuous gas flow helium cryostat (CF1200 Ox-
ford Instruments Cryosystem) and controlled to the accuracy of
±0.5 K. Slightly nonexponential decays of magnetisation were ob-
served in the whole temperature range. The initial slopes of these
decay plots were used to determine the spin–lattice relaxation
time, T1.

The second moment of the 1H NMR line was calculated from a
solid echo signal. Solid echo sequence [30] (90

�

x � s � 90
�

y) (with
s = 17 ls). The normalised line shape of the solid echo spectrum
was identical to that of the FID spectrum. Therefore, the second
moment can be determined on the basis of analysis of the solid
echo shape [31]. The estimated average error on measured T1 val-
ues is 5%, while the corresponding values for M2 values are approx-
imately 10%.

3. Results and discussion

3.1. Proton T1 relaxation time

The present paper considers the proton dynamics in a wide
temperature regime from 40 K up to the melting point. The tem-
perature dependence of the proton relaxation time T1 (55.2 MHz)
for (CH3NH3)5Bi2Br11 (MAPBB) is shown in Fig. 1a–c by open cir-
cles. Results of the earlier measurements [27] of proton T1 of MAP-
BB performed at 90 MHz resonance frequency are shown also in
Fig. 1b and c by triangles.

Two separate minima on T1 (55.2 MHz) temperature depen-
dence are visible. The temperature dependence of T1 (55.2 MHz)
suggests that the observed broad minimum (two less separated
minima) of relaxation time T1 near 50 K can be assigned to the clas-
sical C3 hindered rotations of CH3 and NH3 groups, in the threefold
potential. The relaxation time at minimum value equals
Tmin

1 ¼ xi
1:425C, where C is the relaxation constants and xi is the res-

onance frequency. The higher the value of C the shorter the relax-
ation time Tmin

1 is. The relaxation constant C is proportional to the
R�6

is (the distance between the protons to minus six powers). The
smaller the value of Ris, the higher the value of C and the deeper
the T1 minimum. The H–H distance in CH3 and NH3 groups are
0.178 nm and 0.170 nm. Moreover the minimum with the lower
activation energy is shifted to lower temperatures. We can see that
the lower value T1 minimum belongs to higher temperatures and
the higher value T1 minimum belongs to lower temperatures. The
low temperature slope of these minimums indicates the lower
activation energy of 2.64 kJ/mol. Therefore the two less separated
minima of relaxation time T1 near 50 K are caused by NH3 motion
at higher and CH3 motion at lower temperatures. Dotted lines in
Fig. 1a show contributions from the separate motions. The separate
minima at about 50 K caused by the different temperature depen-
dencies of the correlation time prove that the hindered rotation of
CH3 and NH3 groups around C–N axis is uncorrelated. The shallow
minimum in high temperatures (at about 130 K) suggests the addi-
tional motion of the whole methylammonium cation. There is also
a small change in log T1 vs 1/T dependence at the temperature of
the transition from the ferroelectric to paraelectric phase
Tc1 = 311.5 K. The flattening of the T1 temperature dependence in
the lowest temperatures is characteristic for the presence of the
tunnelling jumps through the threefold potential barrier [25,32–
34]. In the lattice that can be described as almost rigid, the mech-
anisms that are normally neglected come into play. One of such
mechanisms can be also relaxation via paramagnetic impurities,
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Fig. 1. Experimental data of the proton T1 at 55.2 MHz (s) and 90 MHz (D). The
solid line in (a–c) presents the fit T1 (55.2 MHz) to the theoretical equations (see
text) assuming Eq. (11) with xT = 226 MHz or Eq. (12) with xT = 80 MHz. The
dotted lines in (a) show the separate contributions from the motions to this fit. The
dashed line in (a) presents the same fit assuming xT = 0 MHz. The dashed lines in
Fig 1b–1c presents the fit of the T1 (90 MHz) experimental data to the theoretical
equations assuming Eq. (11) with xT = 226 MHz (Fig. 1b) and Eq. (12) with
xT = 80 MHz (Fig. 1c). The arrows show the Tc1 (311.5 K) and Tc2 (77 K) transitions
and also Ttun temperatures. Unequal activation energies EH of CH3 and NH3 separate
the Ttun into two temperatures (Ttun(NH3) = 54.6 K, Ttun(CH3) = 46.5 K). The low and
high temperature regimes are designed as ‘‘LT’’ and ‘‘HT’’.
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whose T1 is usually proportional to the square root of the reso-
nance frequency [35]. Unfortunately we do not have access to mea-
surements at two resonance frequencies. The reduction in T1 with
increasing temperature is attributed to the decrease in the elec-
tronic spin–lattice relaxation time with increasing temperature.
The effect of the T1 reduction with increasing temperature at low
temperatures is not observed. T1 is almost temperature indepen-
dent. Such a behaviour of T1 at the lowest temperatures has been
observed not only by us but also recently in tetramethylammo-
nium selenate [25] as well as in some methyl bearing compounds
[32,33] The tunnelling jumps became dominant at low tempera-
tures, when the probability of the Arrhenius over the barrier jumps
is almost zero. It is well known in the literature that the tunnelling
correlation times according to Müller-Warmuth et al. [36], Skin-
ner–Trommsdorff [37] are weakly or Schrödinger [38] no temper-
ature dependent, which is the reason for the low temperature
flattening of the temperature dependence of relaxation time T1.
The tunnelling effects have to be present in the methyl, ammonium
and methylammonium cations without any doubts. Therefore, we
cannot ignore such an obvious stochastic motion (tunnelling jumps
through the barrier) as a mechanism of the lowest temperatures T1

relaxation. The relaxation via paramagnetic impurities can be ne-
glected even in compounds as sensitive to impurities as sugars
[39].

The values of spin–lattice relaxation time T1 at the minimum at
about 50 K longer than expected from the classical theory only
(compare the solid and dashed lines in Fig 1a) reveal the tunnel
splitting of XH3 where X = C, N [25,26,32–34].

The fractions of molecules nv0 and nv1, in separate vibrational
levels can be assumed to be Boltzmann fractions of molecules asso-
ciated with average energies of the ground and first excited levels.
Because the population of molecules in the second excited level is
very low, it seems reasonable to assume that all molecules occupy
two torsional levels (nv0 + nv1 = 1, nv1/nv0 = exp(�E01/RT)). There-
fore, the values of nv0, nv1 are

nv0 ¼
1

expð�E01=RTÞ þ 1
ð1Þ

nv1 ¼
expð�E01=RTÞ

expð�E01=RTÞ þ 1
ð2Þ

and the relaxation rate is

1
T1
¼ nv0

1
T1

� �
v0
þ nv1

1
T1

� �
v1

ð3Þ

The (1/T1)v0, and (1/T1)v1 are the relaxation rates of the molecules in
the ground and first excited vibrational states. The values of (1/T1)v0,
and (1/T1)v1 are

1
T1

� �
v0
¼ 1

T1

� �intra

v0
þ 1

T1

� �inter

v0
ð4Þ

1
T1

� �
v1
¼ 1

T1

� �intra

v1
þ 1

T1

� �inter

v1
ð5Þ

where ð1=T1Þintra
v0 , ð1=T1Þintra

v1 , ð1=T1Þinter
v0 , ð1=T1Þinter

v1 are the relaxation
rates for the H–H dipolar interactions inside the methyl group (in-
tra) and dipolar interactions between methyl group proton and out
of methyl group proton (inter) with the spectral densities corre-
sponding to the motions at these levels.

According to the classical mechanics, to overcome a potential
barrier, the particles must have kinetic energy (thermal energy)
greater than the height of the barrier. The correlation time for
jumps over the potential equivalent barriers is

sH
3 ¼ sH

03 expðEH=RTÞ ð6Þ

where sH
03 is the preexponential factor, EH = VH � Ev0 is the molar

activation energy, VH and Ev0 are the potential barrier height and



210 L. Latanowicz et al. / Journal of Magnetic Resonance 211 (2011) 207–216
the energy of the ground state vibrational level for the Avogadro
number of particles.

According to quantum mechanics, the particles whose kinetic
energy is lower than the barrier height can jump through a poten-
tial barrier (incoherent tunnelling, tunnelling correlation time, sT

3,
characterises this motion). The stochastic molecular motions in
the ground and first excited vibrational states do not have the
same rates. Therefore, the correlation times sH

3 , sT
3 for separate v0

and v1 states have to be defined separately. Assuming that Eq.
(6) defines the ðsH

3 Þv0, the respective correlation times for m1 can
be defined as

ðsH
3 Þv1 ¼ sH

03 exp½ðEH � E01Þ=RT� ð7Þ

1
ðsT

3Þ

� �
v1

¼ k0
1
ðsT

3Þ

� �
v0

ð8Þ

where E01 = Ev1 � Ev0 and k0 � 1.
The value of k0 � 1 indicates a faster rate of tunnelling in the

first excited vibrational state than in the ground state. The value
k0 of about 30 has been established for the rate ðsT

3Þv1 of the proton
transfer in the hydrogen bond [40,41].

The values ð1=T1Þinter
v0 , ð1=T1Þinter

v1 are much smaller than the
ð1=T1Þintra

v0 , ð1=T1Þintra
v1 in the MAPBB crystal because of higher dis-

tances between the respective protons. Moreover the ð1=T1Þintra
v1

can be neglected because the population of the molecules at v1
is small (Fig. 2).

All protons of MAPBB are in the methyl or ammonium groups.
Assuming that the reorientations of CH3 and NH3 groups about
the C–N bond axis are independent of each other and that spin dif-
fusion takes place, the resultant T1 value can be expressed by

1

T intra
1v0

¼ 1
2

1

T intra
1v0

ðCH3Þ þ
1

T intra
1v0

ðNH3Þ
" #

ð9Þ

where 1
T intra

1v0
ðCH3;NH3Þ ¼ 1

3

P3
i¼1

P3
s¼1

1
ðTis

1 Þ
intra
v0

is a sum of dipolar inter-
acting proton pairs in the methyl or ammonium groups. If CH3

and NH3 reorientations were correlated, the correlation times of
both groups would be the same.

Let’s consider the T1 temperature dependence in the low (‘‘LT’’)
temperature regime (Fig. 1). The tunnelling jumps are responsible
for the flattening of the T1 temperature dependence at low temper-
atures below about 20 K and the change in the low temperature
slope minimum T1 at about 30 K. The classical C3 jumps are mani-
fested as a wide T1 minimum at about 50 K. The following two ef-
fects determine the T1 temperature dependence in the ‘‘LT’’ regime:
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Fig. 2. The ratio nv1/nv0 according to the Eqs. (1) and (2). The E01 was assumed
1.26 kJ/mol.
1. The splitting �hxT of the vibrational states of the methyl or
ammonium group superimposes the Zeeman splitting of spin
levels xi in a magnetic field. The tunnelling splitting �hxT of
each vibrational level is driven by the symmetry of the XH3

group, where X = C, N. The infinitesimally small number of mol-
ecules at the excited vibrational levels at low temperatures
(below 1000/T = 15 K�1) permits us to consider the ground
vibrational state only. The symmetry conserving transitions
(�hxi and 2�hxi) are forbidden by the spin selection rules. There-
fore Haupt [26] has proposed to replace the angular NMR fre-
quencies xi and 2xi in the well-known BPP formula [42] with
xi ± xT and 2xi ± xT frequencies, respectively. Because of the
tunnelling splitting of XH3 group, the T1 relaxation time does
not fulfil the BPP equation at the minimum value (dashed line
in Fig. 1a). When the values of xT are high in Gigahertz range
then T1 does not depend on the resonance frequency xi

(�MHz).
2. The specific character of the T1 temperature dependence is due

to complex motion of methyl and ammonium groups in a triple
potential, consisting of jumps over the barrier as well as tunnel-
ling jumps through the barrier. The jumps over the barrier and
the tunnelling jump although geometrically identical (C3 reori-
entation) are described by the different probabilities and occur
via different pathways: one pathway is over the barrier and the
other one is through the barrier. Therefore the jumps over the
barrier and tunnelling jumps are components of a complex
motion.

The T1 time becomes temperature independent at the lowest
temperatures because the correlation time of tunnelling is not
temperature dependent. The following explanation of this phe-
nomenon can be presented. The expression for the tunnelling cor-
relation time has been derived in Refs. [43] and [44]:

sT
3 ¼ sT

03eB
ffiffiffiffiffiffiffiffiffiffiffiffi
EH�CpT
p

ð10Þ

where EH is the activation energy per 1 mol of particles, the value of
B depends on the mass, m, of the tunnelling particle and on the
width of the potential barrier, L, that is B ¼ 2L

�h

ffiffiffiffiffiffi
2m
NAv

q
. The magnitude

of barrier width L in methyl and ammonium groups can be esti-
mated as 0.722 Å and 0.642 Å [38]. Thus B ¼ 0:102 ½

ffiffiffiffiffiffiffiffiffi
Joul

p
��1 for

CH3 and B ¼ 0:091 ½
ffiffiffiffiffiffiffiffiffi
Joul

p
��1 for NH3. The CpT is the average thermal

energy of 1 mol particles, Cp is the molar heat capacity and T is tem-
perature in the Kelvin scale. The values of Cp are temperature
dependent. The temperature dependence of Cp for MAPBB is known
from Ref. [45].

The solution of the Schrödinger equation for the problem of tun-
nelling motion of particles through the potential barrier, gives
explicitly the rate constant of tunnelling jumps (probability of tun-
nelling, coefficient of transparency of the barrier), that is
kT

3 ¼ kðTÞ03 e�
2L
�h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðU0�EÞ
p

, where E is the energy of the particle and U0

is the potential barrier heights. The energy NAvE = CpT + Ev0NAv char-
acterises the energy of the Avogadro number of particles, Ev0 is the
energy of the ground state vibrational level. U0NAv = NAvEv0 + EH (in
joules per mole) concerns the potential barrier per 1 mol of parti-
cles. Therefore the value under square root is NAvEv0 + EH � CpT �
NAvEv0 = EH � CpT. When temperature increases, the values of CpT
became higher than EH. The value of expð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EH � CpTÞ

p
= 1 for

EH = CpTtun. Ttun is the characteristic temperature above which the
probability of tunnelling jumps has no real value because the
expression under the square root becomes negative. Above the
temperature of Ttun the probability of tunnelling jumps is zero.

The Schrödinger equation applied by us solves several problems
[38,43,44,46–49]. We are able to explain why tunnelling jumps are
detectable only at low temperatures up to a certain temperature.
The tunnelling jumps begin at a temperature, at which the thermal
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energy of the particle becomes lower than the activation energy
(CpT 6 EH). The probability of tunnelling increases when CpT ? 0.
The tunnelling jumps are expected for the light atoms H, D hopping
in hydrogen bonds or methyl groups. The particles are also re-
flected from the barrier (coefficient of reflection from the barrier,
probability of reflection). Thus, the potential barrier is an obstacle
for the de Broglie waves related to thermal energies of the parti-
cles. However, the particles’ energy higher than the potential bar-
rier height allows their hopping over the barrier (Arrhenius law).
The over the barrier (classical) jumps can exist up to the 0 K, but
the correlation time sH

3 is very long at low temperatures. The dom-
inating motion are tunnelling jumps characterised by the correla-
tion time sT

3 .
The flattening of the T1 low temperatures dependence follows

from the temperature dependence of the Schrödinger tunnelling
correlation time. The Schrödinger tunnelling correlation time sT

3

takes a constant value at a low temperatures where CpT� EH,
(sT

3 	 sT
03eB

ffiffiffiffi
EH

p
) and the Arrhenius correlation time is long at low

temperatures and therefore the T1 becomes a constant value.
The Haupt equation for the T1 relaxation rate of a proton pair

‘‘is’’ distanced by RH–H and belonging to the XH3 group is a sum
of the spectral densities [26]

1

ðT1isÞintra
v0

¼ 9
16

J1
isðxiþxTÞþJ1

isðxi�xTÞþJ2
isð2xiþxTÞþJ2

isð2xi�xTÞ
h i

ð11Þ

where xT is the tunnelling splitting of the ground vibrational level
and xi is the angular resonance frequency.

The numerical factor in the Haupt equation has to be assumed
to be twice as small as that in BPP because when xT = 0, both the-
oretical expressions should give identical results. When the tun-
nelling splitting is high, (xT�xi), the Jm

is ðxi 
xTÞ 	 Jm
is ðxTÞ

(spectral density for high value of xT is not resonance frequency
dependent), where m = 1, 2, while for very small tunnelling split-
tings Jm

is ðxi 
xTÞ 	 Jm
is ðxiÞ (BPP equation). Estimating the xT on

the basis of Eq. (11) we have to assume that the Haupt equation,
written intuitively, is proper. According to the Haupt equation,
the T1 relaxation time at minimum is longer than expected from
the BPP equation for xT > 3xi only. For the tunnelling splitting
xT < 3xi, T1 is shorter than that expected from BPP theory. It seems
impossible and it has been a source of our doubts regarding the
Haupt equation. The solid line in Fig. 1b presents the best fit of
the T1 (55.2 MHz) while the dashed line of the T1 (90 MHz) to the
theoretical equation assuming the xT = 226 MHz in Haupt equa-
tion (Eq. [11]).

As the T1 relaxation times shorter than expected from the BPP
formula seem unreliable, the following argumentation can be car-
ried out. The tunnel splitting frequency (due to XH3 group symme-
try) imposes the spin splitting in the magnetic field. Thus we
expect that the BPP equation should be replaced by the equation

1

ðT1isÞintra
v0

¼ 9
8

J1
isðxi þxTÞ þ J2

is½2ðxi þxTÞ�
n o

ð12Þ

Eq. (12) approximated for low values of xT�xi gives the same
values of T1 as the BPP equation, while approximated to high val-
ues xT�xi gives the T1 values at the xT resonance frequency,
which is independent of the resonance frequencies of the spec-
trometer. The illustration of the Eq. (12) is presented by dashed
line in Fig. 1c. Generally, it seems that the Haupt equation for the
T1 relaxation of XH3 groups in the presence of tunnelling splitting
should be verified by theoreticians. The Haupt equation fits well
the experimental data for xT�xi [32–34,43,44] but this equation
seems to be incorrect for low values of xT.

The number of the stochastic processes of methyl ammonium
cation modulates the two spins dipolar interaction Hamiltonian
independently of each other. This is the case of the complex mo-
tion. Each motion has its own correlation function described by dif-
ferent correlation time: sT

3 � C3 tunnelling jumps, sH
3 � C3 over the

barrier jumps and s2 � C2 jumps between two equilibrium posi-
tions distanced by the angle H2. The jump angle H3 = 120� for pro-
ton–proton relaxation vector belonging to the methyl or
ammonium group.

The correlation function and spectral density of the complex
motion of Ris relaxation vector, undergoing three motions can be
derived in a simple way [48]:

hFm
is ðtÞF

m�
is ðt þ sÞi ¼ Kmc2

i c
2
s �h2R�6

is cos2 H3 þ sin2 H3 exp � jsj
sH

3

� �� �

� cos2 H3 þ sin2 H3 exp � jsj
sT

3

� �� �

� ð1� SÞ þ S exp � jsj
s2

� �� �
ð13Þ

and

Jm
is ðxÞ ¼ Kmc2

i c
2
s �h2R�6

is ð1� SÞ cos2 H3 sin2 H3

hn

� 2sH
3

1þ ðxs3Þ2
þ 2sT

3

1þ ðxsTÞ2

 !
þ sin4 H3

2s3HT

1þ ðxs3HTÞ2

#

þS cos4 H3
2s2

1þ ðxs2Þ2
þ cos2 H3

"

� sin2 H3
2s3H2

1þ ðxs3H2Þ2
þ 2s3T2

1þ ðxs3T2Þ2

 !

þ sin4 H3
2s3HT2

1þ ðxs3HT2Þ2

#)
ð14Þ

where Km = 4/5, 2/15, 8/15 for m = 0, 1, 2 and S = 0.75 sin2H2 [50].
Third motion this can also be a C03 rotation. Then S = sin2 H03
[28,50]. The S value for H2 = 90� is identical to that for H03 = 120�.
Therefore, the twofold jumps with the value H2 = 90� cannot be dis-
tinguishable from the C3 jumps in triple potential.

The correlation time for jumps between two equilibrium sites
over the potential barriers is

s2 ¼ s02 expðE2=RTÞ ð15Þ

where s02 is the preexponential factor and E2 is the activation en-
ergy and the correlation times sH

3 and sT
3 are given by Eq. (6) and

(10). Moreover, other symbols in Eq. (14) are

1
s3HT

¼ 1
sT

3

þ 1
sH

3

ð16Þ

1
s3H2

¼ 1
sH

3

þ 1
s2

ð17Þ

1
s3T2

¼ 1
sT

3

þ 1
s2

ð18Þ

1
s3HT2

¼ 1
sH

3

þ 1
sT

3

þ 1
s2

ð19Þ

The spectral density expressed by Eq. (14) can be well con-
verted into a sum of the two parts – ½Jm

is ðxÞ�LT and ½Jm
is ðxÞ�HT where

LT and HT refer to the low and high temperature regimes of T1

dependence.

½Jm
is ðxÞ�LT ¼ Kmc4

i �h2R�6
is sin2 H3 cos2 H3

2sH
3

1þ ðxsH
3 Þ

2 þ
2sT

3

1þ ðxsT
3Þ

2

 !"

þ sin4 H3
2s3HT

1þ ðxs3HTÞ2

 !#
ð20Þ



Table 1
The motional parameters of protons in MAPBB.

CH3 NH3

sH
03 (s) 1.5 � 10�12 1.5 � 10�12

sT
03 (s) 5.5 � 10�7 5.5 � 10�7

s02 (s) 1.8 � 10�12 1.8 � 10�12

siso
0 (s) 3 � 10�12 3 � 10�12

EH (kJ/mol) 2.64 3.6
E2 (kJ/mol) 7.54 7.54
Eiso (kJ/mol) 33.5 33.5

xT (MHz)
Eq. (11) 226 226
Eq. (12) 80 80

Ttun (K) 46.5 54.6
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and

½Jm
is ðxÞ�HT ¼ Kmc2

i c
2
s �h2R�6

is S cos2 H3
2s2

1þ ðxs2Þ2
ð21Þ

The tunnelling jumps (sT
3 correlation time) are not present in

the high temperature regime, where the 2s2

1þðxs2Þ2
function achieves

a maximum. The term cos2 H3 ¼ cos2 1200 ¼ 1
4 in Eq. (21) repre-

sents the ‘‘memory’’ of the faster C3 motion and it is usually called
the ‘‘order parameter’’. The order parameter is the reason why the
high temperature minimum of T1 at 130 K is so high value. We
have to remember that jumps between two sites are manifested
at higher temperatures therefore it has to be slower than C3 mo-
tion. That the T1 relaxation time minimum corresponding to the
slowest component motion is shallower than the minimum T1

associated with such a motion in the absence of the faster motions
has been shown in papers [51–57]. According to the approach to
the tunnelling and jumps over the barrier of protons in triple po-
tential known from literature, these motions are not treated as
components of a complex motion [58]. The tunnelling correlation
time is treated as a correction to the classical correlation time. Such
an approach does not allow analysis of the entire temperature
course of the T1 relaxation time with the contributions coming
from the other components of the complex motion.

By inserting Eq. (20) and (21) to Eq. (11) or Eq. (12), the follow-
ing expression can be obtained for Ris vector belonging to each XH3

group.

1

ðT1isÞintra
v0

¼ 1

ðT1isÞintra
v0

 !
LT

þ 1

ðT1isÞintra
v0

 !
HT

ð22Þ

Eq. (22) should be inserted to Eq. (9) to obtain the whole tem-
perature dependence of T1 of MAPBB cation in the presence of a
complex motion of methylammonium cation.

The fitted parameters in Eq. (22) are sT
3, sH

3 , s2, H2, EH, E2 and xT.
The best fits of the temperature dependencies of T1 (55.2 MHz)

and T1 (90 MHz) to Eqs. (11) and (12) with the spectral density gi-
ven in Eq. (14) are given by the solid lines in Fig. 1b and c. As we
can see, both theoretical equations fit very well the experimental
data T1 (55.2 MHz). The greatest difference in the fitted parameters
is in the xT values obtained. The fitted value of xT equals 226 MHz
according to Eq. (11) and 80 MHz according to Eq. (12). These val-
ues correspond to the 0.93 leV and 0.34 leV energies of tunnelling
splitting. The fit of the theoretical dependence given in Eq. (12) to
experimental data can be performed without any assumptions
concerning xT (Fig. 1c), but in the Haupt equation (Eq. (11)) we
have to assume that the spectral densities of in the ‘‘LT’’ and
‘‘HT’’ temperature regimes were calculated for different xT fre-
quencies. When we want to correlate the present experimental re-
sults at 55.2 MHz (circles) with previous results at 90 MHz
(triangles) we have to assume in Eq. (11) the frequency
xT = 226 MHz in the ‘‘LT’’ temperature regime and the frequency
xT = 0 MHz for the ‘‘HT’’ temperature regime. The theoretical
dependence T1 (xi = 90 MHz, xT = 226 MHz) is situated below the
T1 (xi = 55.2 MHz, xT = 226 MHz) theoretical dependence in the
‘‘LT’’ temperature regime according to Eq. (11) (dashed line in
Fig. 1b). Eq. (12) does not create such problems in T1 temperature
dependences. The dashed line in Fig. 1c is positioned above the so-
lid line drawn according to Eq. (12). Also the fit of the whole tem-
perature dependence was performed at the same frequencies xT.
Therefore, the obtained value of xT of 80 MHz, seems to be more
reliable than xT = 226 MHz. obtained from the Haupt equation.

The highest temperature shallow T1 minimum at about 130 K is
assigned to the jumps of the methylammonium cation between
two positions distanced by the angle H2 in the crystal lattice. The
tunnelling jumps cease above Ttun temperature [43,44,46–49,59].
Therefore in the ‘‘HT’’ temperature regime the complex motion is a
superposition of two classical motions of types C3 and jumps
between two sites (Eq. (21)). Both CH3 and NH3 groups of the
methylammonium cation undergo conformational jumps between
two equilibrium sites with the same frequency, therefore with the
same correlation time s2 Assuming the proton–proton distance Ris

in CH3 and NH3 groups as 0.178 nm and 0.170 nm, respectively, we
can fit the experimental data to Eq. (9) with Eqs. (12) and (21)
assuming the H2 angle as 90�. For the angle H2 = 90� the reduction
of spectral density of C2 motion goes through maximum
(S = 0.75 sin290� in Eq. (21)), similarly as for the H3 = 120�
(S = sin2120� in Eq. (21) [28,50]). However, according to the authors
of Ref. [27] the complex motion was concluded to be a composition
of C3 and C03 hindered rotations. Both kinds of motion are equally
possible, and their distinction from the high temperature T1

minimum seems impossible. The best fit of T1 (55.2 MHz) to Eq.
(22) with Eqs. (9), (11), (12), (20), and (21) and respective frequen-
cies x = (xi ± 226) MHz and x = (2xi ± 226) MHz (Eq. (11)) or
x = (xi + 80) MHz and x = 2(xi + 80) MHz (Eq. (12)) is presented
by solid line in Fig. 1a–c. The best fit parameters are listed in Table 1.
The two values of Ttun follow from different activation energies EH for
the classical C3 motion of CH3 and NH3 groups. These temperatures
Ttun are 54.6 K for NH3 group and 46.5 K for CH3 group in MAPBB
crystal. Individual contributions to T1 from the separate motions
are plotted in Fig. 1a by dotted lines. The tunnelling correlation time
sT

3 was not detected previously, because the measurements were
performed only above liquid nitrogen temperature [27].

3.2. Proton second moment of NMR line

The second moment for the rigid lattice of a dipolar NMR line
(in magnetic field units) Mrigid

2 can be calculated assuming the
Van Vleck theory [60]. When N is the number of interacting nuclei,
then Mrigid

2 is given by the averaged sum of the N dipolar interac-
tions according to the formula

Mrigid
2 ¼ 9

20
c2

i �h2 1
N

XN

i¼1

XN

s¼1

R�6
is ð23Þ

The calculated proton rigid lattice second moment, Mrigid
2 , for

(CH3NH3)5Bi2Br11 protons on the basis of the known structural data
[14] is 31.1G2. This value of Mrigid

2 corresponds to the sum

Mrigid
2 ¼ Mrigid

2 ðintraÞ þMrigid
2 ðinterÞ ð24Þ

where

Mrigid
2 ðintraÞ ¼ 1

2
Mrigid

2 ðCH3Þ þMrigid
2 ðNH3Þ

h i
ð25Þ

Assuming the proton–proton distances of 0.178 nm and
0.170 nm in CH3 and NH3 groups, respectively,
Mrigid

2 ðCH3Þ ¼ 22:5G2 and Mrigid
2 ðNH3Þ ¼ 29:7G2. Therefore, the total

Mrigid
2 ðintraÞ = 26.1G2 and Mrigid

2 ðinterÞ = 5G2.
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The experimental data of the proton second moment of NMR
line, M2, for (CH3NH3)5Bi2Br11 are shown in Fig. 3 by open circles.
The M2 value of the MAPBB protons measured at about 50 K is close
to 11.5 G2, which is not the rigid lattice second moment value. It is
nearly a few times lower than Mrigid

2 : Unfortunately, the measure-
ments of the second moment are not performed below the 40 K.
The second moment undergoes two reductions DM2 above 50 K:
one at about 70 K and the other one at about 260 K. The reduction
at �70 K can be well correlated with the T1 (55.2 MHz) minimum
at about 130 K.

The motion responsible for the reduction DM2 at the higher
temperatures, at about 260 K, is undetectable on the T1 tempera-
ture dependence. The motional parameters, probably of isotropic
tumbling of cations, can be estimated from this reduction DM2 of
the second moment at 260 K.

It is well known that the second moment is sensitive to the sto-
chastic motion. As proposed by Powles and Gutowsky [61], the sta-
tistical nature of motion permits the application of the correlation
function method. The correlation function corresponds to the spec-
tral density

M2is ¼
3
4
c2�h2IðI þ 1Þ

Z þdm

�dm
J0

isðmÞdm ð26Þ

where

J0
isðmÞ ¼

Z þ1

�1
< F0

isðtÞF
0
is � ðt þ sÞ expði2psÞds ð27Þ

where dm is the NMR linewidth in frequency units, and m is the Fou-
rier frequency of the molecular motion.

As follows from the Powles and Gutowsky method, each reduc-
tion in the second moment appears when the frequency of the mo-
tion, which is characterised by the correlation time s, is
comparable to the NMR linewidth in frequency units ((1/
sc) 	 2pdm). The maximum reduction in the second moment,
Mmotion

2 , occurs at temperatures at which all the molecules reorient
fast enough (sc � 1=ðc

ffiffiffiffiffiffiffiffiffiffiffi
Mrigid

2

q
Þ) to reduce the line broadening

[46,62–64].
The temperature dependence of the second moment due to

complex motion consisting of four component motions (classical
and tunnelling jumps of the CH3 and NH3 protons in the triple po-
tential, jumps between two sites and isotropic motion of the
methylammonium cation protons) can be calculated by the meth-
od presented in Ref. [46,62–64]

M2¼Mrig
2 �DM2ðaÞ�DM2ðbÞ�DM2ðcÞ�DM2ðdÞ

þ1
2
DM2ðaÞ

2
p tan�1ðcisT

3ðCH3Þ
ffiffiffiffiffiffiffi
M2

p
Þþ2

p tan�1ðcisT
3ðNH3Þ

ffiffiffiffiffiffiffi
M2

p
Þ

� �

þ1
2
DM2ðbÞ

2
p tan�1ðcisH

3 ðCH3Þ
ffiffiffiffiffiffiffi
M2

p
Þþ2

p tan�1ðcisH
3 ðNH3Þ

ffiffiffiffiffiffiffi
M2

p
Þ

� �

þDM2ðcÞ
2
p tan�1ðcis2

ffiffiffiffiffiffiffi
M2

p
ÞþDM2ðdÞ

2
p tan�1ðcisiso

ffiffiffiffiffiffiffi
M2

p
Þ

ð28Þ

where DMmotion
2 ðaÞ, DMmotion

2 ðbÞ, DMmotion
2 ðcÞ, DMmotion

2 ðdÞ are reduc-
tions of M2 caused by the separate motions characterised by the
correlation times sT

3 sH
3 , s2 and siso. The correlation time for isotropic

tumbling equals

siso ¼ siso
0 expðEiso=RTÞ ð29Þ

where siso
0 is the preexponential factor and Eiso is the activation

energy.
Eq. (28) reduces to simpler form for the C3 tunnelling jumps

only (sH
3 !1; s2 ?1, siso ?1):

M2 ¼ Mrig
2 � DM2ðaÞ þ

1
2

DM2ðaÞ
2
p
½tan�1ðcisT

3ðCH3Þ
ffiffiffiffiffiffiffi
M2

p
Þ

þ tan�1ðcis
T
3ðNH3Þ

ffiffiffiffiffiffiffi
M2

p
Þ� ð30Þ

Eq. (28) is reduced to a simpler form for the C3 classical jumps
only (sT

3 !1; s2 ?1, siso ?1)

M2 ¼ Mrig
2 � DM2ðbÞ þ

1
2

DM2ðbÞ

� 2
p tan�1ðcis

H
3 ðCH3Þ

ffiffiffiffiffiffiffi
M2

p
Þ þ tan�1ðcis

H
3 ðNH3Þ

ffiffiffiffiffiffiffi
M2

p
Þ

h i
ð31Þ

The best fits of the experimental data to Eqs. (28), (30) and (31)
are presented by solid line crosses and x curves in Fig. 3.

It is known that the second moment values M2 for the methyl
bearing solids at liquid helium temperatures do not reach the value
predicted for the rigid molecule. The second moment can be a few
times lower than that calculated for the rigid structure [65,66].
This effect is due to stochastic tunnelling jumps. The tunnelling
jumps reduce the Mrigid

2 to the value Mmotion
2 ðaÞ. The T1 temperature

measurements indicate that the tunnelling jumps are performed in
the methyl and ammonium groups of MAPBB. The tunnelling cor-
relation time sT

3 is not temperature dependent at low temperatures
(sT

3 	 sT
03eB

ffiffiffiffi
EH

p
) at which the thermal energy of particles is much

lower than the activation energy of the classical C3 motion, EH.
The value of the second moment, Mmotion

2 ðaÞ reduced due to tunnel-
ling jumps is expected theoretically at the temperature 0 K. The
DMmotion

2 ðaÞ ¼ DMintra
2 ðsT

3Þ = 19.6 G2 in the presented case (solid line
and crosses curve near 0 K in Fig. 3). Tunnelling jumps reduce M2

up to the Ttun temperature only. The tunnelling jumps cease above
Ttun temperature at which CpTtun = EH [38,43,44,46–49,59]. The Ttun

temperature equals 46.5 K for CH3 and 54.6 K for the NH3 group as
follows from the T1 measurements.

The second reduction of Mrigid
2 to the value Mmotion

2 ðbÞ is caused
by the classical C3 jumps of CH3 and NH3 groups. This reduction
DMmotion

2 ðbÞ begins about 20 K (see x curve in Fig. 3), when also
the tunnelling jumps cause reduction in the second moment.
Therefore, between 20 K and Ttun temperature, the second moment
is reduced by two stochastic motions that are the classical and tun-
nelling jumps in the triple potential. This is only a theoretical pre-
diction, supported by the sT

03 and EH activation parameters
obtained from the T1 temperature dependence, because we do
not have the measurements of the second moment below 40 K. Be-
cause DMmotion

2 ðbÞ = DMmotion
2 ðaÞ the reduced value of the second
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moment Mmotion
2 ðbÞ equals 11.5 G2 above Ttun temperature. The tem-

perature regime between 20 K and 54.6 K can be treated as the
intermediate temperature regime where both motions C3 tunnel-
ling and classical jumps influence the second moment M2 values.
We not show the temperature dependence of the second moment
between these temperatures. The situation would be clearer when
the tunnelling jumps would cease (sT

3 !1) before the second mo-
ment reduction caused by the motion characterised by the correla-
tion time sH

3 .
If the C3 motion is faster than the jumps between two sites and

isotropic motion (the tunnelling motion is not present above the
temperature 54.6 K), the reduction of the second moment is ex-
pected as DM2ðbÞ ¼ sin2 H3Mrigid

2 ðintraÞ, where H3 = 120� [46,62].
The fitted value DM2ðbÞ ¼ 19:6 G2 is in a very good agreement with
the expected value. The DM2(b) reflects the ‘‘true’’ reduction of the
second moment. The other ones, DM2(c), DM2(d) are influenced by
the ‘‘memory’’ (order parameters) of the faster motion reduction
[63]. These order parameters take values lower than one. The value
of the plateau Mmotion

2 ðcÞ ¼ 7:7 G2 corresponds to the second mo-
ment reduction DM2ðcÞ ¼ 3:8 G2: This reduction is due to the
jumps between two equilibrium sites of the methylammonium
cation characterised by the correlation time s2. It has been shown
that the relaxation constant C calculated from the minimum of T1

at 130 K and the fitted value of DM2(c) are interrelated as:

C ¼ 2
3
c2DM2ðcÞ ð32Þ

Therefore, the relaxation constant C corresponding to 3.8 G2 is
18.1 � 108 s2. Such a value of the relaxation constant was obtained
from the T1 high temperature minimum at 130 K.

The next reduction of the second moment DM2ðdÞ ¼ 3:8 G2 to
the value of Mmotion

2 ðdÞ ¼ 4:0 G2 is probably due to the isotropic mo-
tion. This highest temperature reduction is visible only on the M2

temperature dependence and does not correspond to any mini-
mum of T1. If the isotropic motion appeared as a single motion
on the temperature scale, it would reduce the Mrigid

2 ðintraÞ to zero
value. This value 4.0 G2 corresponds, in the experimental error lim-
it, to the Mrigid

2 ðinterÞ calculated as 5 G2. It is interesting to note that
the second moment reduction caused by isotropic tumbling hap-
pens just before the second order phase transition Tc1 = 311.5 K.
The best fit parameters siso

0 and Eiso are listed in Table 1. The motion
identified by us as the isotropic motion was identified also on the
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Fig. 4. Proton correlation times of C3 tunnelling sT
3ðCH3Þ, sT

3ðNH3Þ, (Eq. (10)), and
classical over the barrier jumps sH

3 ðCH3Þ, sH
3 ðNH3Þ, (Eq. (6)) of methyl and

ammonium groups, of classical jumps between two sites of methylammonium
cation s2 (Eq. (15)), and of isotropic rotation siso (Eq. (29)), of the methylammonium
cation as a function of 1000/T (K�1). The motion parameters used to plots are taken
from Table 1. The arrows show the Ttun temperatures.
basis of the T1q method as the 180� flip motion of the methylam-
monium cation. This motion has been predicted but not analysed
by the authors of Ref. [27].

The best fit of Eq. (28) to the experimental data is presented in
Fig. 3 by the solid line. The fitted parameters are DMintra

2 ðbÞ,
DMintra

2 ðcÞ, DMintra
2 ðdÞ, Eiso, siso

0 . The other parameters were assumed
from Table 1.

The values of the correlation times determine the order of the
reductions in the second moment. The first reduction, due to sT

3 ap-
pear at 0 K, the second one, due to sH

3 begins at 20 K and the third
and fourth reductions are due to s2 and siso and take place above
Ttun temperature.
3.3. Correlation times

The temperature dependences of the correlation times sH
3 , sT

3, s2,
siso determined on the basis of the best fit parameters listed in
Table 1 and Eqs. (6), (10), (15), and (29) are presented in Fig. 4.
The sH

3 at low temperatures is very long, therefore the dominant
correlation time is sT

3. As follows from Eq. (10), the correlation time
sT

3 takes a constant value at low temperatures where CpT < EH

(sT
3 	 sT

03eB
ffiffiffiffi
EH

p
). The sT

3 correlation time exists up to the Ttun tem-
perature only.

The activation energies EH for CH3 and NH3 groups are different
(Table 1) and therefore two different temperature dependences of
sH

3 : Therefore the classical motion C3 of methyl and ammonium
groups can be identified as an uncorrelated motion. Also two dif-
ferent values of EH imply that temperature dependences of sT

3 for
CH3 and NH3 are different.

The correlation times s2 and siso have the same activation ener-
gies and preexponential factors for protons from both CH3 as well
NH3 groups. The motional parameters of siso were obtained from
the M2 temperature dependence only.
4. Conclusions

The monomethylammonium protons in (CH3CN3)5Bi2Br11

(MAPBB), polycrystalline material, undergoes a complex motion
composed of four components. The tunnelling jumps (sT

3 correla-
tion time) are responsible for the temperature independent behav-
iour of T1 at lowest temperatures and reduction in M2 to the value
of 11.5 G2 at 0 K. The temperature of zero Kelvin is predicted the-
oretically on the basis knowledge of the Schrödinger tunnelling
correlation time (from T1 measurements). We do not have access
to measurements of second moment at such low temperatures.
The classical hindered C3 rotation (sH

3 correlation time) of methyl
(sH

3 ðCH3Þ) and ammonium (sH
3 ðNH3Þ) groups is responsible for

two T1 (55.2 MHz) minima at about 50 K and for the plateau of
M2 equal 11.5 G2 at about 50 K. The C3 hindered rotation of CH3

and NH3 is not correlated. The correlation times of both groups dif-
fers by the activation energy.

The jumps between two equilibrium sites distanced at 90� of
methylammonium cation (s2 correlation time), cause a shallow
T1 (55.2 MHz) minimum at a temperature about 130 K and the
reduction in the second moment down to the plateau value equal
7.7 G2.

The fourth one motion is that of isotropic motion of whole cat-
ion (siso correlation time). The isotropic tumbling is detectable only
on the M2 temperature dependence. The isotropic motion reduces
the second moment to 4.0 G2 which is the value of the intermolec-
ular part of the second moment. This reduction happen just before
the temperature of the phase transition Tc = 311.5 K.

The small tunnelling splitting xT of the methyl and ammonium
groups was estimated as 226 MHz from the Haupt equation or
80 MHz from the Haupt equation corrected by us. These frequencies
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correspond to 0.93 leV and 0.34 leV tunnel splitting energy. Both
small values of the tunnel splitting energy are lower than the exper-
imental error in the neutron scattering measurements.
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